Name: Woods			Grading Quarter:1	Week Beginning: 8/28/23
School Year: 23-24			Subject: Precalculus	
$\begin{aligned} & 3 \\ & \text { ㅇ } \\ & \frac{1}{2} \\ & \stackrel{2}{2} \end{aligned}$	Notes:	Objective: Students will be able to solve exponential and logarithmic equations with and without technology. Lesson Overview: Notes: Start with "Level 1" problems and work up to "Level 6" problems. Take note of problem-solving strategies at each level. Partner work: Rotate partners solving problems on the projector. Formatively assess what levels need the most work.		Academic Standards: P.F-BF.B. 5 Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.
$\begin{aligned} & \underset{\sim}{\wedge} \\ & \text { D } \\ & 0 \\ & \stackrel{0}{\otimes} \end{aligned}$	Notes:	Obje and tech Less This "Pro part solve	ts will be able to so quations with and ion of yesterday's the room" style of blems that require	Academic Standards: P.F-BF.B. 5 Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents.
\sum_{0} $\stackrel{0}{2}$ 0 0 $\stackrel{0}{0}$ $\stackrel{1}{2}$	Notes:	Obje and Less Not com solvi amo (solv	s will be able to ap to real-world probl any different topic t (solving for final radioactive decay (g for time), and do ation and solving fo	Academic Standards: P.F-BF.A. 1 Write a function that describes a relationship between two quantities. c. Compose functions. For example, if $\mathrm{T}(\mathrm{y})$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $\mathrm{T}(\mathrm{h}(\mathrm{t}))$ is the temperature at the location of the weather balloon as a function of time. A2.F-BF.A. 1 Write a function that describes a relationship between two quantities. Include problem-solving opportunities utilizing real-world context. Functions include linear, quadratic, exponential, polynomial, logarithmic, rational, sine, cosine, tangent, square root, cube root, and piecewise-defined functions.

$\begin{aligned} & \text { 긱 } \\ & \frac{1}{\lambda} \\ & \stackrel{0}{2} \\ & \frac{2}{<} \end{aligned}$	Notes:	Objective: Students will be able to apply exponential and log functions to real-world problems. Lesson Overview: This is a continuation of yesterday's lesson. Notes: Cover as many different topics as time allows: compound interest (solving for final amount and solving for time), radioactive decay (solving for amount and solving for time), and doubling situations (solving for population and solving for time).	Academic Standards: P.F-BF.A. 1 Write a function that describes a relationship between two quantities. c. Compose functions. For example, if $\mathrm{T}(\mathrm{y})$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $\mathrm{T}(\mathrm{h}(\mathrm{t}))$ is the temperature at the location of the weather balloon as a function of time. A2.F-BF.A. 1 Write a function that describes a relationship between two quantities. Include problem-solving opportunities utilizing real-world context. Functions include linear, quadratic, exponential, polynomial, logarithmic, rational, sine, cosine, tangent, square root, cube root, and piecewise-defined functions.
$\begin{aligned} & \text { 끔. } \\ & \frac{2}{2} \end{aligned}$	Notes:	No School	Academic Standards:

