Name: Woods			Grading Quarter:1	Week Beginning: 8/1/23
School Year: 23-24			Subject: Precalculus	
$\begin{aligned} & 3 \\ & \text { ㅇ } \\ & \frac{1}{2} \\ & \stackrel{2}{2} \end{aligned}$	Notes:	NO		Academic Standards:
$\begin{aligned} & \underset{\sim}{\wedge} \\ & \text { D } \\ & 0 \\ & \stackrel{0}{\otimes} \end{aligned}$	Notes:	Obje Less What iden Take the sqrt	Library of Functions features of a function and how can I fferent forms (ex: table, graph)? , domain, range, and properties for tions $-x, x^{\wedge} 2, x^{\wedge} 3$, abs $x, e^{\wedge} x, \ln x$,	Academic Standards: A2.F-IF.B. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Include problem-solving opportunities utilizing real- world context. Key features include: intercepts, intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Functions include linear, quadratic, exponential, polynomial, logarithmic, rational, sine, cosine, tangent, square root, cube root, and piecewise-defined functions.

\sum_{0} $\stackrel{0}{2}$ D $\stackrel{0}{0}$ $\stackrel{2}{2}$	Notes:	Objective: U1 L2: Piecewise Functions Lesson Overview: Take notes: how to graph a piecewise function, how to evaluate one using both the graph and algebraically The importance of understanding domain Independent practice: graphing examples by hand	Academic Standards: A2.F-IF.B. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Include problem-solving opportunities utilizing real- world context. Key features include: intercepts, intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Functions include linear, quadratic, exponential, polynomial, logarithmic, rational, sine, cosine, tangent, square root, cube root, and piecewise-defined functions.
$\stackrel{\circ}{2}$	Notes:	Objective: U1 L3: Composition of Functions Lesson Overview: Take notes: How to write a composite function as an inner and outer function Different notations Independent practice on whiteboards	Academic Standards: P.F-BF.A. 1 Write a function that describes a relationship between two quantities. c. Compose functions. For example, if $T(y)$ is the temperature in the atmosphere as a function of height, and $\mathrm{h}(\mathrm{t})$ is the height of a weather balloon as a function of time, then $T(h(t))$ is the temperature at the location of the weather balloon as a function of time.

$\begin{aligned} & \frac{\pi}{2} \\ & \frac{2}{2} \\ & \frac{2}{2} \end{aligned}$	Notes:	Objective: Extra practice with Piecewise Functions Lesson Overview: Partner activity: matching piecewise functions to their graphs With extra time: independently graph examples by hand, focus on domains other than $x>0$ or $x<0$. Include examples with three branches.	Academic Standards: A2.F-IF.B. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Include problem-solving opportunities utilizing real- world context. Key features include: intercepts, intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Functions include linear, quadratic, exponential, polynomial, logarithmic, rational, sine, cosine, tangent, square root, cube root, and piecewise-defined functions.

